首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   767篇
  免费   49篇
  国内免费   30篇
林业   27篇
农学   79篇
基础科学   8篇
  331篇
综合类   224篇
农作物   31篇
水产渔业   27篇
畜牧兽医   89篇
园艺   16篇
植物保护   14篇
  2024年   2篇
  2023年   13篇
  2022年   19篇
  2021年   24篇
  2020年   21篇
  2019年   36篇
  2018年   30篇
  2017年   43篇
  2016年   37篇
  2015年   30篇
  2014年   35篇
  2013年   74篇
  2012年   106篇
  2011年   43篇
  2010年   32篇
  2009年   36篇
  2008年   28篇
  2007年   31篇
  2006年   31篇
  2005年   30篇
  2004年   21篇
  2003年   17篇
  2002年   12篇
  2001年   10篇
  2000年   11篇
  1999年   7篇
  1998年   12篇
  1997年   12篇
  1996年   5篇
  1995年   10篇
  1994年   4篇
  1993年   2篇
  1992年   6篇
  1991年   3篇
  1990年   1篇
  1988年   6篇
  1986年   2篇
  1984年   1篇
  1983年   1篇
  1980年   1篇
  1974年   1篇
排序方式: 共有846条查询结果,搜索用时 406 毫秒
31.
32.
对硝酸钙泥、硝酸镁泥两种化工废渣的磷吸附特性进行了研究。结果表明:用Langmuir方程能很好地拟合300℃焙烧后的硝酸钙泥硝酸镁泥和500℃焙烧后的硝酸钙泥硝酸镁泥对磷的等温吸附。300℃、500℃焙烧后的硝酸钙泥、硝酸镁泥的磷最大吸附量分别为37.45、32.36、35.59、28.82mg/g ,表面吸附强度因子分别为1.5615、0.2946、0.2948、0.2882mL/g ,最大缓冲能力分别为58.48、9.53、10.49、8.31mL/g。对磷的吸附效果最好的是300℃焙烧后的硝酸钙泥。300℃、500℃焙烧后硝酸钙泥、硝酸镁泥对磷的去除率达到83%~99%左右。去除率最好的是300℃的硝酸钙泥。  相似文献   
33.
The culture of Litopenaeus vannamei in inland low salinity waters is currently being practiced in various countries around the world. These environments are often deficient in key ions essential for normal physiological function, including potassium (K+) and magnesium (Mg2+). Farmers have sometimes been able to counteract ionic deficiencies in the water profile by adding mineral salts containing sources of K+ and Mg2+. The purpose of this study was to explore the possibility of correcting deficiencies of K+ and Mg2+ in the water profile with dietary supplementation of these minerals. Two separate 7‐week experiments were conducted in 4.0 g−1 artificial low salinity water to evaluate the effects of mineral supplements (K+, Mg2+ and NaCl) to diets of L. vannamei reared in low salinity waters. In trial 1 seven diets were formulated (10 g NaCl kg−1, 20 g NaCl kg−1, 150 mg kg−1 Mg2+, 300 mg kg−1 Mg2+, 5 g K+ kg−1, 10 g K+ kg−1, and a basal diet to serve as a control). Minerals were added in the form of purified potassium chloride (KCl), magnesium chloride (MgCl2·6H2O) and NaCl. Trial 2 evaluated the use of a coating agent for the Mg2+ and NaCl treatments, while a K+ amino acid complex was utilized in the K+ treatments to reduce mineral leaching. Trial 2 was performed using similar treatment levels as trial 1. Shrimp survival and growth were assessed in both experiments. Results from trial 1 indicated no significant differences in survival, growth or percent weight gain. Results from trial 2 revealed no significant differences in survival and growth in the NaCl and Mg2+ treatments. However, significant differences in growth (P < 0.05) were observed when using the 10 g K+ kg−1 treatment, suggesting that dietary supplementation of a K+ amino acid complex may help improve growth of the species in low salinity waters.  相似文献   
34.
[目的]为研究外源镁对强酸性紫色土壤阳离子交换效应。[方法]选择重庆地区强酸性紫色土壤为对象,采用1:5的土水比,用10emol(+)/LMgSO4溶液对土壤进行多次交换处理。[结果]在实验条件下,外源镁能快速取代土壤胶体上吸附的各种盐基离子,但对致酸离子(H+、A1+)则难以达到快速、完全取代,经5次交换后,盐基饱和度由46.6%上升至72.4%,土壤pH仅上升0.7个单位;Mg2+与Ca+、Na+的交换分别可以用指数方程Y=14.998e-1.4849x(R2=0.9938)、二次方程Y=0.011 1x2-0.1005x+0.233(R‘=0.986)进行很好地拟合;Mg“与K’的交换后期明显表现出有部分土壤次生黏土矿物层间固定的K’会被交换出来,导致被交换出的K’总量增加。[结论]在无酸碱中和的条件下,外源钱可以改变土壤胶体盐基离子的构成,但对于改良强酸性土壤并无实际意义,反之,过量的外源镁还可能造成土壤其他盐基离子的损失。  相似文献   
35.
Rainbow trout (Oncorhynchus mykiss) (mean initial weight 0.84 g) were fed diets containing graded levels of magnesium (Mg) (78 to 725µg/g) while being exposed to one of several levels in the rearing water (1.4 to 1000 mg/l). Uptake of Mg from the water, in Mg-deficient fish, was linearly related to the water Mg concentrated. It appears that the fish's Mg requirement can be met from either or both the diet or water. Under the experimental conditions, a water-borne concentration of 46 mg/l was calculated to be sufficient to meet the Mg requirement of the fish fed a Mg-free diet.  相似文献   
36.
An 8‐week feeding experiment was conducted to determine the dietary magnesium (Mg) requirement and physiological responses of Litopenaeus vannamei in low salinity water of 2 g L?1. Casein–gelatin‐based diets supplemented with seven levels of Mg (0, 0.4, 0.8, 1.6, 3.2, 6.4 and 8.0 g kg?1) were fed to juvenile shrimp. Prior to the experiment, the postlarvae were gradually acclimated to the low salinity media and fed with a basal diet (0.5 g Mg kg?1) for 2 weeks. After 8 weeks of feeding, survival ranged from 80.11% to 85.65% with no significant difference among the treatments. Hepatopancreas Mg2+‐ATPase and Na+/K+‐ATPase activities and muscle content of lipid and protein were not significantly affected by graded levels of Mg. The weight gain and mineral (calcium, potassium, sodium and total phosphorus) content of different tissues were significantly affected by dietary Mg levels, while there were no significant differences in ash and zinc content in tissues. The Mg content in tissues except hepatopancreas was maintained relatively constant regardless of dietary treatments. The dietary Mg requirement for optimal growth was 2.60–3.46 g Mg kg?1 by using the polynomial regression analysis based on growth.  相似文献   
37.
Four experiments were conducted to evaluate the effects of calcium and magnesium hardness on the acute toxicity of copper sulphate to Indian major carp, rohu (Labeo rohita, Hamilton) fingerlings and juvenile catfish (Channa punctatus, Bloch) in medium alkalinity experiments. A preliminary bioassay determined the 96 h LC50 of copper sulphate to be 0.56 mg L?1 for L. rohita fingerlings and 11.78 mg L?1 for juvenile C. punctatus placed in water with calcium hardness and total alkalinity set at 100 mg L?1 CaCO3. In the first experiment, rohu were exposed to 0.56 mg L?1 copper sulphate in environments where calcium hardness was varied from 50 to 350 mg L?1 CaCO3 and total alkalinity was 100 mg L?1 CaCO3. As calcium hardness increased, copper‐induced rohu mortalities decreased significantly from 90% at 50 mg L?1 CaCO3 to 7% at 350 mg L?1 CaCO3. In the second experiment, rohu were exposed to 0.56 mg L?1 copper sulphate in environments where magnesium hardness was varied from 50 to 350 mg L?1 CaCO3 with total alkalinity set at 100 mg L?1 CaCO3. Hundred percent mortality was observed in magnesium‐based hardness treatments. In the third experiment, catfish were exposed to 11.78 mg L?1 copper sulphate in environments where calcium hardness was varied from 50 to 400 mg L?1 and total alkalinity was 100 mg L?1 CaCO3. As calcium hardness increased, copper‐induced catfish mortalities decreased significantly from 90% at 50 mg L?1 CaCO3 to 4% at 400 mg L?1 CaCO3. In the fourth experiment, catfish were exposed to 11.78 mg L?1 copper sulphate in environments where magnesium hardness was varied from 50 to 400 mg L?1 CaCO3, with total alkalinity set at 100 mg L?1 CaCO3. In this case, 100% mortality was also observed in magnesium‐based treatments. Mortality rates in magnesium hardness treatments were consistent with those in the second experiment. These data suggest a calcium‐specific mechanism with respect to acute copper toxicity both in rohu and catfish.  相似文献   
38.
四环素类抗生素在土壤和堆肥中的吸附和降解   总被引:6,自引:0,他引:6  
Two agricultural soils were collected from Dahu and Pinchen counties and swine manure compost (SMC) from Ping-tung County in Taiwan, China to investigate the sorption and dissipation of three tetracyclines (TCs), i.e., oxytetracycline (OTC), tetracycline (TC) and chlortetracycline (CTC), in compost, soils and soil/compost mixtures with different organic carbon (OC) contents. There were seven treatments in total. TCs were most strongly adsorbed to SMC in all treatments due to the high OC content. When SMC was present in the soils, the sorption of TCs was significantly enhanced, which might be attributed to the increased OC content and CEC. The adsorption of TCs showed non-linear adsorption isotherms and fitted well to the Freundlich model. After 49 d of incubation at 25 ℃ in soils and soil/compost mixtures in the dark, TCs elapsed in all substrates, with the time required for 50% degradation (DT50) between 20 and 41 d, and the time for 90% degradation (DT90) between 68 and 137 d. Soil amended with compost enhanced the stability of TCs and reduced their mobility. The dissipation of TCs in a soil environment was slow, indicating that these compounds might be persistent in soil.  相似文献   
39.
饲喂不同日粮的山羊尿沉渣晶体的化学组成和显微形态   总被引:2,自引:2,他引:0  
采集饲喂棉饼、玉米粉、麸皮、豆饼四种常见日粮的山羊尿样,应用化学定性分析、X-射线衍射物相分析、X-射线能谱分析和扫描电子显微镜观察等手段分别进行尿沉渣晶体的化学组成和显微形态的分析和观察。结果表明,饲喂棉饼日粮和麸皮日粮时山羊尿沉渣晶体的化学组成为磷酸钾镁,显微开矿为斜方柱状;饲喂玉米日粮时为碳酸镁,形态为长方柱状;饲喂豆饼日粮时为碳酸钙(方解石),形态为短方柱状。最后,还对几种尿沉渣晶体的生成  相似文献   
40.
Salinization and sodication are abiotic soil factors, important hazards to soil fertility and consequently affect the crop production. Soil salinization is of great concern for irrigated agriculture in arid and semi‐arid regions of the world; sodicity is characterized by an excessively high concentration of sodium (Na) in their cation exchange system. In recent times, attention has been turned to study the impacts of these factors (salinity and sodicity) on soil microbial activities. Microbial activities play central role in degradation and decomposition of soil organic matter, mineralization of nutrients and stabilization of soil aggregates. To understand the ecology of soil system, therefore, it is important to be conversant with the soil microbial activities, which show quick response to little change in the soil environment. Microbial activities (generally measured as C–N dynamics, soil respiration–basal respiration, or CO2 emission), microbial abundance, microbial biomass, quotients (microbial and metabolic) and microbial community structure, and soil enzymes have been considered as potential indicators to assess the severity of the land degradation and the effectiveness of land use management. Therefore, it is important to synthesize the available information regarding microbial activities in use and management of salt‐affected soils. The reclamation and management of such soils and their physico‐chemical properties have been reviewed well in the literature. In this review, an attempt has been made to compile the current knowledge about the effects of soil salinization and sodication on microbial and enzyme activities and identify research gaps for future research. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号